Telegram Group & Telegram Channel
Introducing Symmetries to Black Box Meta Reinforcement Learning [2021] - применяем VSML на RL-задачах

Одна из статей, про которую я рассказывал выше, понравилась мне настолько, что я решил прочитать все статьи её автора за последние годы, и там я нашёл кучу интересного на тему мета-обучения.

В данной работе в лоб применяют VSML + генетику (называют SymLA) в нескольких сериях экспериментов:

1) Классические элементарные RL-задачи с перемешиванием
Суть эксперимента в том, что мы обучаем модель обучаться на задаче, а затем мета-тестируем на той же задаче, но с перемешанными входами и действиями. Бейзлайн от этого плавится, а VSML в принципе инвариантна к перестановкам (на новой задаче), поэтому у неё всё хорошо

2) Лабиринт с капканом и сердечком
Агент управляет персонажем в маленькой координатной сетке, на которой есть положительная и отрицательная награда. Модель мета-обучают, а при мета-тестировании награды меняют местами.
Бейзлайн жёстко переобучается под сбор сердечка, и после того, как оно начинает давать отрицательную награду, он продолжает его собирать. У VSML кривые обучения в обоих случаях одинаковые, то есть она всю информацию извлекает в процессе мета-тестирования

3) Смена RL-задачи на радикально другую
Всё просто - модель обучают на Gridworld (задача из пункта 2), а применяют на CartPole - совсем непохожей задаче. Картина та же самая.

Вполне вероятно, что данная технология сейчас находится в положении нейросетей в конце 1990-х. На MNIST (снова) успешно применили, но на большей задаче применить пока нереально. Не знаю, какие тут нужны вычислительные ресурсы, и есть ли они хотя бы у Deepmind, но я думаю, тот, кто первый успешно применит это на Atari, начнёт новую эру в ML. У нас будут претренированные алгоритмы, которые все будут применять в своих нишевых задачах и получать сильный прирост к профиту.

Надеюсь, к этому времени не запретят заниматься ML без ярлыка от роскомнадзора святейших мудрецов.

@knowledge_accumulator



tg-me.com/knowledge_accumulator/85
Create:
Last Update:

Introducing Symmetries to Black Box Meta Reinforcement Learning [2021] - применяем VSML на RL-задачах

Одна из статей, про которую я рассказывал выше, понравилась мне настолько, что я решил прочитать все статьи её автора за последние годы, и там я нашёл кучу интересного на тему мета-обучения.

В данной работе в лоб применяют VSML + генетику (называют SymLA) в нескольких сериях экспериментов:

1) Классические элементарные RL-задачи с перемешиванием
Суть эксперимента в том, что мы обучаем модель обучаться на задаче, а затем мета-тестируем на той же задаче, но с перемешанными входами и действиями. Бейзлайн от этого плавится, а VSML в принципе инвариантна к перестановкам (на новой задаче), поэтому у неё всё хорошо

2) Лабиринт с капканом и сердечком
Агент управляет персонажем в маленькой координатной сетке, на которой есть положительная и отрицательная награда. Модель мета-обучают, а при мета-тестировании награды меняют местами.
Бейзлайн жёстко переобучается под сбор сердечка, и после того, как оно начинает давать отрицательную награду, он продолжает его собирать. У VSML кривые обучения в обоих случаях одинаковые, то есть она всю информацию извлекает в процессе мета-тестирования

3) Смена RL-задачи на радикально другую
Всё просто - модель обучают на Gridworld (задача из пункта 2), а применяют на CartPole - совсем непохожей задаче. Картина та же самая.

Вполне вероятно, что данная технология сейчас находится в положении нейросетей в конце 1990-х. На MNIST (снова) успешно применили, но на большей задаче применить пока нереально. Не знаю, какие тут нужны вычислительные ресурсы, и есть ли они хотя бы у Deepmind, но я думаю, тот, кто первый успешно применит это на Atari, начнёт новую эру в ML. У нас будут претренированные алгоритмы, которые все будут применять в своих нишевых задачах и получать сильный прирост к профиту.

Надеюсь, к этому времени не запретят заниматься ML без ярлыка от роскомнадзора святейших мудрецов.

@knowledge_accumulator

BY Knowledge Accumulator




Share with your friend now:
tg-me.com/knowledge_accumulator/85

View MORE
Open in Telegram


Knowledge Accumulator Telegram | DID YOU KNOW?

Date: |

How to Buy Bitcoin?

Most people buy Bitcoin via exchanges, such as Coinbase. Exchanges allow you to buy, sell and hold cryptocurrency, and setting up an account is similar to opening a brokerage account—you’ll need to verify your identity and provide some kind of funding source, such as a bank account or debit card. Major exchanges include Coinbase, Kraken, and Gemini. You can also buy Bitcoin at a broker like Robinhood. Regardless of where you buy your Bitcoin, you’ll need a digital wallet in which to store it. This might be what’s called a hot wallet or a cold wallet. A hot wallet (also called an online wallet) is stored by an exchange or a provider in the cloud. Providers of online wallets include Exodus, Electrum and Mycelium. A cold wallet (or mobile wallet) is an offline device used to store Bitcoin and is not connected to the Internet. Some mobile wallet options include Trezor and Ledger.

Knowledge Accumulator from cn


Telegram Knowledge Accumulator
FROM USA